p-group, metabelian, nilpotent (class 3), monomial
Aliases: C42.353C23, (C4×D8)⋊23C2, C4⋊D8⋊23C2, C4⋊C4.346D4, C4⋊SD16⋊7C2, (C4×SD16)⋊6C2, Q8.Q8⋊19C2, D4.Q8⋊19C2, D4⋊D4⋊20C2, D8⋊C4⋊10C2, C2.18(D4○D8), C4⋊C4.72C23, C4⋊C8.54C22, (C2×C8).46C23, Q8.9(C4○D4), D4.10(C4○D4), (C4×C8).110C22, (C2×C4).317C24, C22⋊C4.147D4, (C4×D4).80C22, C23.256(C2×D4), SD16⋊C4⋊13C2, (C4×Q8).77C22, C8⋊C4.11C22, C4.Q8.20C22, C2.27(D4○SD16), (C2×D8).126C22, (C2×D4).408C23, C4⋊D4.27C22, C23.46D4⋊6C2, C4⋊1D4.60C22, C22.D8⋊17C2, C22⋊C8.30C22, (C2×Q8).380C23, C2.D8.174C22, D4⋊C4.35C22, (C22×C4).290C23, C42.7C22⋊2C2, (C2×SD16).18C22, C22.577(C22×D4), C42.C2.12C22, C22.34C24⋊1C2, Q8⋊C4.155C22, C23.33C23⋊12C2, C42⋊C2.128C22, C2.118(C22.19C24), C4.202(C2×C4○D4), (C2×C4).501(C2×D4), (C2×C4⋊C4).614C22, (C2×C4○D4).143C22, SmallGroup(128,1851)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
C1 — C22 — C42⋊C2 — C42.353C23 |
Generators and relations for C42.353C23
G = < a,b,c,d,e | a4=b4=c2=e2=1, d2=b2, ab=ba, ac=ca, dad-1=ab2, ae=ea, cbc=ebe=b-1, bd=db, dcd-1=a2c, ece=bc, de=ed >
Subgroups: 404 in 198 conjugacy classes, 88 normal (84 characteristic)
C1, C2, C2, C4, C4, C22, C22, C8, C2×C4, C2×C4, D4, D4, Q8, Q8, C23, C23, C42, C42, C22⋊C4, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, D8, SD16, C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C4○D4, C4×C8, C8⋊C4, C22⋊C8, D4⋊C4, Q8⋊C4, C4⋊C8, C4.Q8, C2.D8, C2×C4⋊C4, C2×C4⋊C4, C42⋊C2, C42⋊C2, C4×D4, C4×D4, C4×Q8, C4⋊D4, C4⋊D4, C22.D4, C42.C2, C4⋊1D4, C2×D8, C2×SD16, C2×C4○D4, C42.7C22, C4×D8, C4×SD16, SD16⋊C4, D8⋊C4, D4⋊D4, C4⋊D8, C4⋊SD16, D4.Q8, Q8.Q8, C22.D8, C23.46D4, C23.33C23, C22.34C24, C42.353C23
Quotients: C1, C2, C22, D4, C23, C2×D4, C4○D4, C24, C22×D4, C2×C4○D4, C22.19C24, D4○D8, D4○SD16, C42.353C23
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 23 27 19)(2 24 28 20)(3 21 25 17)(4 22 26 18)(5 62 14 12)(6 63 15 9)(7 64 16 10)(8 61 13 11)(29 38 36 41)(30 39 33 42)(31 40 34 43)(32 37 35 44)(45 59 49 55)(46 60 50 56)(47 57 51 53)(48 58 52 54)
(5 10)(6 11)(7 12)(8 9)(13 63)(14 64)(15 61)(16 62)(17 21)(18 22)(19 23)(20 24)(29 38)(30 39)(31 40)(32 37)(33 42)(34 43)(35 44)(36 41)(45 47)(46 48)(49 51)(50 52)(53 59)(54 60)(55 57)(56 58)
(1 52 27 48)(2 45 28 49)(3 50 25 46)(4 47 26 51)(5 40 14 43)(6 44 15 37)(7 38 16 41)(8 42 13 39)(9 35 63 32)(10 29 64 36)(11 33 61 30)(12 31 62 34)(17 60 21 56)(18 53 22 57)(19 58 23 54)(20 55 24 59)
(1 36)(2 33)(3 34)(4 35)(5 60)(6 57)(7 58)(8 59)(9 51)(10 52)(11 49)(12 50)(13 55)(14 56)(15 53)(16 54)(17 43)(18 44)(19 41)(20 42)(21 40)(22 37)(23 38)(24 39)(25 31)(26 32)(27 29)(28 30)(45 61)(46 62)(47 63)(48 64)
G:=sub<Sym(64)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,23,27,19)(2,24,28,20)(3,21,25,17)(4,22,26,18)(5,62,14,12)(6,63,15,9)(7,64,16,10)(8,61,13,11)(29,38,36,41)(30,39,33,42)(31,40,34,43)(32,37,35,44)(45,59,49,55)(46,60,50,56)(47,57,51,53)(48,58,52,54), (5,10)(6,11)(7,12)(8,9)(13,63)(14,64)(15,61)(16,62)(17,21)(18,22)(19,23)(20,24)(29,38)(30,39)(31,40)(32,37)(33,42)(34,43)(35,44)(36,41)(45,47)(46,48)(49,51)(50,52)(53,59)(54,60)(55,57)(56,58), (1,52,27,48)(2,45,28,49)(3,50,25,46)(4,47,26,51)(5,40,14,43)(6,44,15,37)(7,38,16,41)(8,42,13,39)(9,35,63,32)(10,29,64,36)(11,33,61,30)(12,31,62,34)(17,60,21,56)(18,53,22,57)(19,58,23,54)(20,55,24,59), (1,36)(2,33)(3,34)(4,35)(5,60)(6,57)(7,58)(8,59)(9,51)(10,52)(11,49)(12,50)(13,55)(14,56)(15,53)(16,54)(17,43)(18,44)(19,41)(20,42)(21,40)(22,37)(23,38)(24,39)(25,31)(26,32)(27,29)(28,30)(45,61)(46,62)(47,63)(48,64)>;
G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,23,27,19)(2,24,28,20)(3,21,25,17)(4,22,26,18)(5,62,14,12)(6,63,15,9)(7,64,16,10)(8,61,13,11)(29,38,36,41)(30,39,33,42)(31,40,34,43)(32,37,35,44)(45,59,49,55)(46,60,50,56)(47,57,51,53)(48,58,52,54), (5,10)(6,11)(7,12)(8,9)(13,63)(14,64)(15,61)(16,62)(17,21)(18,22)(19,23)(20,24)(29,38)(30,39)(31,40)(32,37)(33,42)(34,43)(35,44)(36,41)(45,47)(46,48)(49,51)(50,52)(53,59)(54,60)(55,57)(56,58), (1,52,27,48)(2,45,28,49)(3,50,25,46)(4,47,26,51)(5,40,14,43)(6,44,15,37)(7,38,16,41)(8,42,13,39)(9,35,63,32)(10,29,64,36)(11,33,61,30)(12,31,62,34)(17,60,21,56)(18,53,22,57)(19,58,23,54)(20,55,24,59), (1,36)(2,33)(3,34)(4,35)(5,60)(6,57)(7,58)(8,59)(9,51)(10,52)(11,49)(12,50)(13,55)(14,56)(15,53)(16,54)(17,43)(18,44)(19,41)(20,42)(21,40)(22,37)(23,38)(24,39)(25,31)(26,32)(27,29)(28,30)(45,61)(46,62)(47,63)(48,64) );
G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,23,27,19),(2,24,28,20),(3,21,25,17),(4,22,26,18),(5,62,14,12),(6,63,15,9),(7,64,16,10),(8,61,13,11),(29,38,36,41),(30,39,33,42),(31,40,34,43),(32,37,35,44),(45,59,49,55),(46,60,50,56),(47,57,51,53),(48,58,52,54)], [(5,10),(6,11),(7,12),(8,9),(13,63),(14,64),(15,61),(16,62),(17,21),(18,22),(19,23),(20,24),(29,38),(30,39),(31,40),(32,37),(33,42),(34,43),(35,44),(36,41),(45,47),(46,48),(49,51),(50,52),(53,59),(54,60),(55,57),(56,58)], [(1,52,27,48),(2,45,28,49),(3,50,25,46),(4,47,26,51),(5,40,14,43),(6,44,15,37),(7,38,16,41),(8,42,13,39),(9,35,63,32),(10,29,64,36),(11,33,61,30),(12,31,62,34),(17,60,21,56),(18,53,22,57),(19,58,23,54),(20,55,24,59)], [(1,36),(2,33),(3,34),(4,35),(5,60),(6,57),(7,58),(8,59),(9,51),(10,52),(11,49),(12,50),(13,55),(14,56),(15,53),(16,54),(17,43),(18,44),(19,41),(20,42),(21,40),(22,37),(23,38),(24,39),(25,31),(26,32),(27,29),(28,30),(45,61),(46,62),(47,63),(48,64)]])
32 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 4A | ··· | 4F | 4G | ··· | 4O | 4P | 4Q | 8A | 8B | 8C | 8D | 8E | 8F |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 4 | ··· | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 8 | 8 |
size | 1 | 1 | 1 | 1 | 4 | 4 | 4 | 8 | 8 | 2 | ··· | 2 | 4 | ··· | 4 | 8 | 8 | 4 | 4 | 4 | 4 | 8 | 8 |
32 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | |||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | D4 | D4 | C4○D4 | C4○D4 | D4○D8 | D4○SD16 |
kernel | C42.353C23 | C42.7C22 | C4×D8 | C4×SD16 | SD16⋊C4 | D8⋊C4 | D4⋊D4 | C4⋊D8 | C4⋊SD16 | D4.Q8 | Q8.Q8 | C22.D8 | C23.46D4 | C23.33C23 | C22.34C24 | C22⋊C4 | C4⋊C4 | D4 | Q8 | C2 | C2 |
# reps | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 | 2 | 2 |
Matrix representation of C42.353C23 ►in GL6(𝔽17)
13 | 0 | 0 | 0 | 0 | 0 |
0 | 13 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 15 | 0 |
0 | 0 | 0 | 0 | 16 | 1 |
0 | 0 | 0 | 0 | 13 | 0 |
0 | 0 | 0 | 16 | 13 | 0 |
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 15 | 0 | 0 |
0 | 0 | 1 | 16 | 0 | 0 |
0 | 0 | 0 | 13 | 0 | 1 |
0 | 0 | 4 | 13 | 16 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
1 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 4 | 0 | 0 | 16 |
16 | 2 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 8 | 11 | 0 | 6 |
0 | 0 | 8 | 14 | 3 | 3 |
0 | 0 | 15 | 2 | 0 | 9 |
0 | 0 | 0 | 5 | 3 | 12 |
1 | 15 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 11 | 0 | 10 | 10 |
0 | 0 | 14 | 0 | 0 | 10 |
0 | 0 | 0 | 5 | 3 | 3 |
0 | 0 | 5 | 12 | 3 | 3 |
G:=sub<GL(6,GF(17))| [13,0,0,0,0,0,0,13,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,16,0,0,15,16,13,13,0,0,0,1,0,0],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,1,1,0,4,0,0,15,16,13,13,0,0,0,0,0,16,0,0,0,0,1,0],[1,1,0,0,0,0,0,16,0,0,0,0,0,0,1,1,0,4,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,16],[16,0,0,0,0,0,2,1,0,0,0,0,0,0,8,8,15,0,0,0,11,14,2,5,0,0,0,3,0,3,0,0,6,3,9,12],[1,0,0,0,0,0,15,16,0,0,0,0,0,0,11,14,0,5,0,0,0,0,5,12,0,0,10,0,3,3,0,0,10,10,3,3] >;
C42.353C23 in GAP, Magma, Sage, TeX
C_4^2._{353}C_2^3
% in TeX
G:=Group("C4^2.353C2^3");
// GroupNames label
G:=SmallGroup(128,1851);
// by ID
G=gap.SmallGroup(128,1851);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,-2,253,456,758,1018,80,4037,1027,124]);
// Polycyclic
G:=Group<a,b,c,d,e|a^4=b^4=c^2=e^2=1,d^2=b^2,a*b=b*a,a*c=c*a,d*a*d^-1=a*b^2,a*e=e*a,c*b*c=e*b*e=b^-1,b*d=d*b,d*c*d^-1=a^2*c,e*c*e=b*c,d*e=e*d>;
// generators/relations